This function allows filtering, ordering, quantiling, and grouping of data for plotting.

conditionals(
  data_filters = NULL,
  data_ordering = ordering(),
  data_quantiling = quantiling(),
  data_grouping = NULL
)

Arguments

data_filters

Logical statements by which to filter data.

data_ordering

Order object with order settings. See ?ordering for more information.

data_quantiling

Quantile object with quantile settings. See ?quantiling for more information.

data_grouping

If quantiles not set, split data by the specified categorical variable.

Value

'data_conditions' object for input to the corresponding 'data_conditions' argument in select functions.

Details

It may be desirable to analyze certain subsets of TSSs or TSRs, or split the data based on various categorical variables. This function extends the flexibility of various other functions by adding the ability to filter, quantile, order, and/or group data prior to downstream analysis.

'data_filters' takes logical statements to filter TSSs or TSRs by any column stored in the data. 'data_ordering' takes an 'ordering' object as input, which allows ordering of data by one or more columns. 'data_quantiling' takes a 'quantiling' object as input, and will split plots by the given number of quantiles. 'data_grouping' will split a plot by the given column if quantiling is not set.

See also

ordering for ordering information. quantiling for quantiling information.

Examples

data(TSSs) assembly <- system.file("extdata", "S288C_Assembly.fasta", package="TSRexploreR") exp <- TSSs[1] %>% tsr_explorer(genome_assembly=assembly) %>% format_counts(data_type="tss") %>% tss_clustering(threshold=3) %>% associate_with_tsr %>% tsr_metrics
#> Warning: Arguments in '...' ignored
#> Warning: Arguments in '...' ignored
# Sequence logo of TSSs from peaked TSRs conditions <- conditionals(shape_class == "peaked") p <- plot_sequence_logo(exp, data_conditions=conditions) # Sequence color map sorted by descending TSS score conditions <- conditionals(data_ordering=ordering(desc(score))) p <- plot_sequence_colormap(exp, data_conditions=conditions)
#> Warning: Arguments in '...' ignored
# Sequence logos split by TSS score quantile conditions <- conditionals(data_quantiling=quantiling(score, n=5)) p <- plot_sequence_logo(exp, data_conditions=conditions)
#> Warning: Arguments in '...' ignored
# Sequence logo split by TSR shape class conditions <- conditionals(data_grouping=shape_class) p <- plot_sequence_logo(exp, data_conditions=conditions)